的电子管和晶体管也会导致成本极度上升,因此这些设备只能用来加工一些国防领域最高精尖的器械,是德国工业进步的种子,不是用来直接加工武器装备的。
至于德马克公司提出的大焊缝焊接技术的突破,对于维勒安来说则根本不是问题——在后世,使用电渣焊的技术可以轻松解决大焊缝处理的问题,只不过这个时代的电渣焊技术还处在萌芽状态,但是维勒安没有打算另起炉灶从头搞电渣焊,他只是让多恩伯格少校去找了两家德国国内目前在焊机领域最尖端的企业,然后交给他们两个改装过的拆掉了燃料阀及管路的星际时代“地狱犬”火蝠战士喷射电极,让他们改造成合用的电渣焊机,这个在德国工业界被认为会困扰人们多年的技术难点就这样被天顶星科技轻松秒杀了——这些东西连美联储金库的大门都能直接焊开,对付区区焊缝还不是小菜一碟。
解决了这些技术瓶颈,剩下的也就都是德马克公司自己不断打怪升级的体力活了。
后来,德马克公司在莫比亚斯集团和佩内明德基地的新式焊机和机械加工刀具的支持下,也确实于1937年搞出了3万吨级的模锻机和2万吨级的自由锻机,赶上了沙恩霍斯特级战巡舰动力系统及传动、桨叶的锻造工作,也让帝国的喷气式发动机提前拥有了可以用于压力测试的涡轮发动机。
1938年,随着电子管计算机进入成熟期,佩内明德基地研发出了第一台使用电子管控制的数控三轴联动机床,随着这个突破,德马克公司也在次年搞出了4.5万吨级模锻机、3万吨自由锻机和1.5万吨多向模锻机。
“俾斯麦”级战列舰靠着这些机器制造的超强主轴,仅仅依靠三轴动力传动效果就超过了英美四轴驱动所能带动的最大马力。me-262也随着这些机械的出现拥有了比历史上稳定的多的心脏。
最终,当晶体管计算机和晶体管数控机床、6万吨级模锻机这些逆天科技的出现,帝国的冶金锻压已经不再局限于锻压铝合金和铁质合金的程度,钴镍合金、钛合金这些超硬金属在巨大的压力下也将无力地屈服。ta-183也将在帝国的天空彻底终结野马和流星肆虐的空间。
…………
当然,如果无尘车间仅仅是用来制取陶瓷镀层刀具和晶体管的半导体原材料的话,那就太小看维勒安的智商了。在后面的几年中,随着陶瓷镀层刀具的普及和晶体管研发的加快,伊莉雅又帮助维勒安罗列了更多可以使用这些车间加工的新玩意儿。其中最有价值的一项就是陶瓷轴承。
众所周知,精密轴承是现代工业各项大型装备中都会用得到的,从坦克的悬挂机构到传动机构,飞机和战舰的桨叶旋转轴,到坦克和战舰的炮塔转动。以及精密工业设备的各种旋转机构,轴承都具有非常重要的作用。
德国最大的轴承生产基地是萨克森州的施韦因富特,在原来的历史上,美国的战略空军曾经重点轰炸过这里,以图让轴承产量不足成为一个扼住德**工产能咽喉的枷锁。
传统的轴承无一例外都是使用金属材料制造的,但是到了维勒安这里,一切都改变了,既然拥有了可以适合大规模热压烧结的无尘车间,又可以加工出便于使用的陶瓷材料,通过模具加压烧结的办法制造陶瓷轴承也就成了维勒安的一个当然选择。
轴承也是一种不需要在高温环境下工作的机械零件——当然,部分高转速的含油轴承除外。所以陶瓷和金属之间的热膨胀系数差异不会带来很大的影响,而陶瓷材料强大的静态耐压性能(静态耐压就是可以增加压力,但是不可以磕磕碰碰,因为陶瓷耐压、坚硬,但是比较脆)让这种材料用来做轴承实在是太合适不过了。
使用碳化硅陶瓷制作的轴承,可以比同样体积的金属轴承至少减少40%的自重,耐压耐磨效果却反而提高30%、转动摩擦力降低25%——因为热压烧结的陶瓷材料表面颗粒可以比模具锻造的金属材料更加光滑。
唯一的劣势是如果受到巨力打击时陶瓷轴承比金属的容易碎裂——比如如果“俾斯麦”级战列舰的主炮塔被衣阿华的16寸mark-7炮弹在近距离零角度击中的话,俾斯麦主炮塔的转动座圈内的轴承就可能会全部崩碎,让炮塔再也无法转动。(远距离高抛物角击中都不一定有用,因为垂直方向上的压力是不会直接传递到水平转动轴承上的。)
但是实战中这种情况几乎不可能出现,如果真的出现的话,那么战舰本身都没有什么生还的希望了,区区几个炮塔又算得了什么呢?
以二战之前的工业技术水平,美国人和德国人在轴承领域和液压传动、电机领域是比较领先的。德国人靠着施韦因富特的高精轴承和西门子的液压/电机设备造出了每秒转动5°的俾斯麦主炮塔,美国人在轴承上不如德国,但是通用电气的强大技术积累和西门子之间也是不遑多让,所以衣阿华级主炮塔转速也可以达到4°/秒。
而电机和轴承领域都不堪入目的英国人和日本人,就只能开着主炮塔转速2°/秒的乔治五世级和大和级参加战斗了,一旦面对快速多变