当前位置:读零零>其他类型>四进制造物主> 不做人的小剪刀(相关技术背景科普,大白话版)
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

不做人的小剪刀(相关技术背景科普,大白话版)(2 / 2)

到病毒入侵,就会把这个病毒的特征记到本本上,用于秋后算账。当那个不知好歹的东西再一次现身时,便以最快地速度,重拳出击。

具体来说,CRISPR序列会被首先转录成RNA分子,称为向导RNA。这个向导RNA会和细胞内的某种名为Cas的蛋白质结合,形成一种核糖核蛋白复合物,简称为RNP。RNP会像哨兵一样在细胞里勤勤恳恳地终日巡逻。

而这位哨兵寻找的对象,就是任何一段能够和向导完美配对的DNA分子。一旦两者相遇,哨兵就会启动cas蛋白的切割功能,将这段DNA切成一个个小的片段,成功地把敌人给碎尸万段了。

这时,可能有人要问了,细菌里的CRISPR和人类的基因编辑有什么关系呢?

那些可怜的遗传病患者,他们的DNA与正常DNA通常只有几个或几十个碱基不一样,要想修正他们的基因组,就要精确地定位到不一样的地方。否则,只放一些小剪刀进去对着DNA长链乱剪乱切,这人肯定就活不了了。

所以,如何生产一个GPS,让剪刀找到正确的目标再剪,是一个重要的技术难题。

而细菌CRISPR系统里的向导RNA就是这个难题的答案。

如果我们能够在体外合成特定的向导RNA,并让它能够特异性识别某些DNA片段,问题不久迎刃而解了吗?

于是,CRISPR技术便应运诞生了。经过一众科学家十余年的努力,我们可以任意地合成向导RNA和Cas蛋白,由它们俩组成的人工RNP可以通过多种方式被导入细胞,被向导 RNA带到正确的地方,再下剪子。

但是,可能有人要问了,如果这把带GPS的剪子如此好用,我们现在又为什么依然要受到那些基因缺陷疾病的困扰?为什么没有人造生物?为什么没有实现基因飞升?

这时因为,这些可爱的小剪子,有着一些致命的缺陷。

首先,由于各方面的限制,向导RNA不能太长,通常也就是20来个碱基对的长度。要知道,人类DNA上可是有30亿碱基对,区区长度为20的碱基片段,可能在DNA长链中随处可见。

所以这些可爱的小剪刀在发挥作用时,也可能也同时剪到其它奇奇怪怪的地方,造成各种乱七八糟的突变,导致细胞死亡。

其次,小剪刀在发挥作用时,需要目标基因的上游存在一个特定的短的碱基序列,我们称之为PAM序列。如果实际操作中,目标基因上游到处都没有PAM序列,那么即使小剪刀找到了正确位置,也无法咔嚓一刀剪下去。

最后,小剪刀也是有脾气的。有时,它的GPS没有找到完全匹配的DNA片段,但小剪刀就是想剪。于是它便会随便找一段类似的DNA片段,咔嚓一下剪下去。然后转身就走,深藏功与名。

以上三种情况,在专业术语里,叫做“脱靶”。

小剪刀很好用,但奈何小剪刀经常不做人。因此,这项技术的实际效果,目前来说并不理想。

上一页 目录 +书签 下一章