当前位置:读零零>历史军事>朕真的不务正业> 第一百四十八章 缘幂势既同则积不容异
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第一百四十八章 缘幂势既同则积不容异(1 / 5)

“缘幂势既同,则积不容异。”朱载堉将一句话拿了出来,面色凝重的说道:“要理解这句话的意思,是非常困难的。”

这句话的意思是,等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等。

朱载堉拿出了两个立方体,第一个是正立方体,一个是球,这个正立方体的边长是球的直径,他将两个小球递给了张宏给陛下查验后,才开口说道:“这是从一个错误开始的。”

“九章算术中说:黄金方寸重十六两,金丸径寸重九两,率生于此,未曾验也。就是说边长为一寸的金属球重为十六两,而直径为一寸的球体,为九两。”

“进而我们得到了一个球体公式,也就是V=9/16d。”

“这个公式自从周朝就开始用了,《周官·考工记》:朅氏为量,改煎金锡则不耗,不耗然后权之,权之然后准之,准之然后量之。”

朱翊钧听闻之后,疑惑的问道:“用实际测量的方法算出的球体公式,误差有多少呢?”

张居正拿过了算盘噼里啪啦的打了下,解答道:“9/16-π/6≈0.038901,显而易见,差别不是很大,但是算学就是如此,不对就是不对。”

朱载堉继续说道:“是以九与十六之率,偶与实相近,而丸犹伤耳,按9/16的比率,来计算球和外切立方体体积时,则球的体积较实际多一些,多多少?多0.038倍左右。”

“我们之前在割圆的时候就讲到过,割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”

“就是说,点构成了线,线构成了面,这也是面积口诀得到的基本原理。”

“我们知道一个圆的面积等于外切正方形面积的π/4,1300年前,刘徽思索能不能找到一个立方体,让这个立方体不管从哪里去切,它的横截面,都是一个圆和外切正方形呢?”

“刘徽设计了一个这样的立方体,名字叫牟合方盖,牟相同,合盖上,方,就是说这个立方体的每一个面的横截面都是正方形,盖雨伞,它的形状是两个方形的雨伞,扣在一起,正好和球完全相切。”

“刘徽将两个底面半径相同的圆柱体相交,然后将公共部分截取出来,得到了这个立方体。”

“这个时候,只要求出这个立方体的体积,乘以π/4,就得到了球的体积。”

“可惜,刘徽始终无法求出这个立方体的体积,说:陋形措意,惧失正理。敢不阙疑,以俟能言者,期许后人的智慧了。”

朱翊钧拿到了牟合方盖,这是朱载堉做的教具,得益于大明工匠们的巧手,将两个圆柱相交部分截出来的牟合方盖,这玩意的体积的确不好求,它不规则。

朱载堉才继续说道:“1000多年前,祖冲之的儿子祖暅解决了这个问题。”

“它将牟合方盖切成了八个小牟合方盖,然后截开,利用勾股定理等计算,将小牟合方盖减掉1/,数学这件事上,似乎从来没有难住过陛下,陛下总是能够精准的理解这些内容。

朱载堉在讲什么?讲的是积分,无穷求和。新笔趣阁

微分,是无穷切割,积分就是无穷求和,微分和积分互逆运算,就是微积分。

大明在数学领域,完全有资格进行考古式科研,能把一千多年前的数学原理捣鼓明白,大明的算学就已经,完完全全站在了世界的顶端。

“皇叔,是这样吗?”朱翊钧笑着说道。

朱载堉俯首说道:“是这样的,陛下英明。”

“难道仅仅这样吗?不能更进一步吗?”朱翊钧接着说道。

更进一步?朱载堉陷入了一些迷茫之中,还如何再进一步呢?他缺少一个数学工具才能再进一步。

“慢慢来就是了。”朱翊钧站起来,笑着说道:“皇叔钻研有方,重重有赏!”

考古式科研,不是什么不可以接受的事儿,无穷求和的概念,能够解决许多的现实问题,比如如火如荼的清丈,测量不规则图形面积的问题,就可以用到这种思想。

将一个不规则的图形,切割成以步为宽的小矩形,在步的左侧建立一个小矩形,在步的右侧建立一个小的矩形,步左和步右的矩形面积之和除以二,得到不规则田亩的面积,这个方法,在实际清丈中,运用的炉火纯青。

“陛下,程大位有丈量步车献上。”朱载堉其实对恩赏并不是很看重,他对这些身外之物,向来不怎么在意,要不然也不能在王府外的土房子里,一住就是十几年了。

朱载堉更加在乎,自己的志向能够达成,而且正在一步步的达成,陛下对他的科研工作的支持,就三个字,无上限,要什么给什么。

“丈量步车?”朱翊钧本来以为今天的算学已经结束,没想到还有大货在等着他,他满是笑意的说道:“快快呈上来。”

程大位将一辆丈量步车推了上来,将一本书递给了张宏。

这本书上是关于丈量步车的详细记录,完

上一章 目录 +书签 下一页