这个温度下,薄弱环节在于碳-氢键,而不是碳-碳键,因为碳-氢键的极性较强,所以它更容易在高温下活化裂解。
再向上的温度区就是碳基生命的禁区了,除非有其他手段,否则阿米巴再如何努力应该都会止步在这里,无法继续向上突破。
吴辉虽然还有点意犹未尽,但是这个温度也足够了,即便是航空发动机里面的钛合金其工作温度也才不多500摄氏度左右,而火箭发动机采用的钛合金材料,工作温度实际上并不比这高多少。
虽然火箭发动机燃烧室的温度可以达到5000摄氏度,但实际材料工作温度远远到不了这个温度,主要因为它采用了先进的降温防护措施,否则这个温度都已经高于钛合金的沸点了,不采取降温措施的话,什么合金也受不住。
材料的工作温度和最高耐受温度还不一样,工作温度是指材料在保证强度、韧性等物理性能基本正常的情况下,能够承受长期工作环境的温度区间。最高耐受温度通常是指这种材料保持化学稳定的最高温度,一般超过这个温度,材料在化学层面就无法保持稳定存在了,这个温度是不会考虑材料物理性能的。
高温解决掉了,接下来需要解决高压的问题,细胞能够承受深海1000个大气压的超高压力,只是因为它可以有效实现内外压平衡,并不代表它真的可以承受1000个大气压的压力差。
所以吴辉需要想法提高阿米巴组件的物理性能,让这些个细胞的集合体,争取达到类似于钛合金的物理强度。
吴辉将乱七八糟各种元素想法溶解在营养液里,虽然浓度并不太高,但是营养液可以不停的补充更换,这样阿米巴无论需要哪种元素都不会缺乏。
然后吴辉取来一块阿米巴组织,将其置于压力机中间,缓慢的增加压力,不停挤压中间的阿米巴组织,同时给阿米巴一个定向的变异指令,就是增加组织结构强度对抗外压。
在充足元素离子面前,阿米巴自由选取各种离子,开始无序的随机变异,大量的失败变异被抛弃,成功的变异被筛选出来,并被进一步强化,然后再次循环无序变异-筛选的过程。
生物进化的这个变异-筛选过程本来应该是以数百万年为单位,通过不断的代继传承和优化来实现的,结果在阿米巴这里,一切都被加速,它可以十几秒钟就完成一次变异,有效的变异立刻被传递给所有阿米巴细胞,无效的变异被迅速抛弃掉。
在压力机两块液压块的挤压下,中间那块阿米巴组织顽强的对抗着不断增强的压力,在对抗的同时还通过变异不断改善细胞内部结构,以及细胞之间的连结方式,同时更新着细胞之间的组织结构。
阿米巴通过快速的变异更新,扛住了两端不断增加的压力,压力机显示现在压力为25公斤,这意味着中间这块体积不过200多毫升的阿米巴组织,差不多要承受0。6个大气压。并且是压力差,这个水压完全不同,需要考验这块阿米巴组织的整体物理强度。
好在这块阿米巴一直被浸泡在流动的营养液中,海量的营养可以支撑它不断进行高强度变异和筛选淘汰。大量死亡的阿米巴细胞被抛弃掉,替换成新生成的具备更高强度的细胞。
同时随着压力的增加,阿米巴无序变异过程中,开始逐步吸收营养液中的各种元素离子,并且通过各种生物酶将它们组合成强度更大的化合物,有各种合金、有各种生物金属、有高分子材料,有无机化合物,它们不断填充和替换掉阿米巴细胞的各个部分。
阿米巴正在不断调整自身的结构组成,由一只正常的生物细胞慢慢变得面目全非,越来越像一只非常诡异特殊的活性化合物集合体。
压力在继续增加,从0。6个大气压一直缓慢而坚定的向上增长,0。7、0。8、0。9、1。0……
当压力机显示压力为350公斤的时候,阿米巴仍然顽强的抗住了这巨大的压力,现在已经相当于10个大气压了。
周围参观的霍老等几个老教授看到这个结果纷纷惊叹不已,因为实在让人无法想象,一块肉居然可以抗住10个大气压的压力,就是换成恐龙肉恐怕也早已经被压成肉馅了。
这还不算完,压力一直在持续增加,此时这块阿米巴组织的外观表现已经越来越不像肉了,更像是一块奇怪的材料。
等压力达到100个大气压,就是将近100公斤每平方厘米的时候,霍老和几个教授已经觉得有点不能接受这个实验结果了。突然有人说一块肉可以抗住100大气压的压力,这事让成天跟各种生物打交道的教授们非常难以接受。
但今天注定是他们终生难忘的一天,阿米巴的细胞此时已经带上明显的金属色泽。压强继续在缓慢增加……
等压力机的读数超过140吨的时候,所有人都已经麻木了。按照这块阿米巴组织的截面积计算,此时压力强度已经超过400MPa,就是说现在这块无侧束状态下的阿米巴组织它的抗压强度已经达到了4000个大气压,这个数值已经超过了花岗岩。