当前位置:读零零>都市言情>万能数据> 第四百一十三章 解惑
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第四百一十三章 解惑(1 / 2)

413章

任意实数阶或复数阶积分和导数通常被称为分数阶微积,而分数阶微积分在粘弹性力学、统计与随机过程、动力学系统控制和光学信号处理等方面均有应用,具有丰富的理论内涵。

察里他们这个课题组,就是利用连续函数和 Ba nac h压缩映像理论,研究分数阶导数的非线性微分方程边值存在解的问题。

不需要做太过深入的了解,程诺只需要知道个大概,就能够从容的应对任何问题。

程诺一页页不急不缓的往后翻着,虽然程诺没有刻意加快速度,但在察里的那三位课题组同组成员的眼中,就像是见了鬼一样。

他,这是真的在认真看,而不是在敷衍我们?

这样想着,那个男生的目光再次落在察里同学身上,满是哀怨。意思是说,“这个不着调的家伙就是你小子请过来的?”

察里再次欲哭无泪。

时间一分一秒的流逝,十几分钟后,程诺将手中的那摞A4纸放回桌面,笑道,“我刚才从头到尾把你们的研究的内容看了一遍,如果我猜的不错的话,你们应该是在最后基于Banach压缩映像的微分方程边值分析遇到麻烦了吧?”

三人将目光齐刷刷的落在察里同学身上。

为啥又是我?!

察里一翻白眼,无语的道,“不要看我,我只是和大神说请他帮个忙,并没有说我们遇到的具体问题。不信的话,你们问大神?”

程诺从一边的桌上拿过几张空白的草稿纸,一边说道,“察里确实没有给我提及过具体的内容。不过这也不难猜,你们的研究报告,在最后的边值分析那部分,缺失了很大部分的证明过程,我想应该不是刻意漏掉的吧。”

那个男生点头,算是认可的程诺的话,“确实,在这部分,我们虽然知道想要的结果是什么,但具体的那个过程,我们几个想了好几天,都没有弄出个成果来。”

刚刚程诺的表现,已经让男生对程诺的印象改观了一些。

这个学弟,似乎并非那么寻常!

于是他试探的问道,“既然你知道了我们遇到的麻烦,那有办法解决吗?”

程诺笑了笑,竖起一根手指摆了摆,缓缓吐出两个字,“不难!”

察里同学面色一喜。

男生洛奇嘴角一抽。

为啥我有一种,观看逼王现场直播的感觉?

真相了的洛奇,静等着程诺开口。

“我想,你们之所以在这个问题上墨迹这么长时间,有很大一部分原因,是用错了方法。”

“用错了方法?”

“对!”程诺用笔帽轻轻敲击桌面,“我先问你一个问题,什么是分数阶导数的非线性微分方程?”

男生下意识的回答,“分数阶导数的非线性微分方程,可以用两个公式来概括:f 一( z)+(D +Dt)(z)一f( x,(z)),z∈(,1),还有y()==y(1)。”

程诺十分满意的点头,“说的没错。但你是否还记得,这个分阶导数,还有它的存在性条件?”

存在性条件?洛奇一愣。

程诺解释道,“ Di ri chle t边值一定的情况下,分阶导数的微分方程就会存在一个这样的存在性条件。”

程诺拿起笔,在纸上唰唰唰写道,“(D+y)(x)=(D1-y)(x),(D1-y)(x)=(D-y)(x).”

男生看着程诺写下的一行公式,陷入了沉思。

可程诺并没有给他思考的时间。他又不是几人的老师,没有必要跟着他们的节奏走。

他接着阐述自己的观点,“你们试图想去证明分数阶导数的非线性微分方程边值存在唯一解的方法,是直接通过公式的推导,在利用Ba nac h压缩映像理论得出结果。”

“但由刚才我写的那两个存在性条件来说,这种方法是百分百错误的!”程诺笃定的语气说道。

“那……”男生忍不住开口。

程诺双手下压,笑眯眯的道,“同学,不要这么着急嘛,平稳气场,平稳气场。正确的证明方法,我马上就讲。”

程诺先是在草稿纸上写下三个关键词:Green函数、Lipschitz压缩条件、 Banac h空间。

“我的证明法很简单,其实只要你们懂了我这三个关键词,明白也只是时间问题,不过为了节省双方的时间,我还是直接推导一遍吧。”程诺语气很平淡,理了理脑海中的思路,便像是讲课般的一样,边讲边写。

“第一步,采用扰动方法结合 Gr een函数,进一步研究带有左右分数阶导数的微分方程边值问题,给出齐次微分方程 Di r i chl e t边值问题,则一u ( x)= ,x∈(,1),y()==y(1)。”

“假设函数 f(x,u)在[ , 1[×(+∞,-∞)一(一oo,+o

上一章 目录 +书签 下一页