沈奇独自一人留在屋子里,搬把椅子坐下,面向黑板。
孙教授留下的课题是,基于黑板上的左图,补充完善右图。
从数学逻辑上来说这不难理解,基于假设推导出证明,或基于已知条件求解出正确答案。
左图是个啥玩意,一个圆内接一个六边形。
这是可以触摸到的几何,即欧几里得几何,至少看上去是这样。
欧氏几何有个问题,它与人们的触觉总是一致,与人们的视觉却并非总是一致。
当然了,这个问题对99%以上的人类来说不算是个问题,普通百姓才不管你两条平行直线无线延伸下去会怎样,我就坐个高铁回家过年而已,高铁车厢下的两条铁轨在非欧几何定义下是否相交与我何关?
与触觉几何相对的是视觉几何,前者可以理解为欧氏几何,后者在两百年前又被称为新几何,罗巴切夫斯基和黎曼对新几何做出的贡献最大,如今所说的非欧几何包含了罗氏几何、黎曼几何。
以黎曼几何为例,它的核心观点是,同一平面上的任何两条直线一定相交。
这显然是跟欧氏几何相矛盾的,在黎曼几何的标准中,任何两条铁轨无限延伸下去就总有一天会相交。
不能否定欧氏几何的经典意义,在浩瀚的宇宙中,任何掌握了基本代数、基本欧氏几何和基本低速物理学定律的文明,都值得地球文明与其交流沟通、互通有无、携手共进、互惠共赢。只要那些文明承诺放弃二向箔民用技术的研究,大家就能做朋友,共建宇宙美好家园。
视角从浩瀚宇宙切回银河系-猎户旋臂-太阳系-地球-中国首都-燕京大学的一间小黑屋里。
沈奇陷入沉思的原因是,黑板上的图形题目是基于什么标准,欧氏几何标准还是非欧几何标准?
随手在地上捡起一张白纸,在桌面上抄起一根铅笔,沈奇在白纸上画草稿图,他复制了黑板上的圆形内接六边形。
沈奇延长六边形的两条边ab、de,使它们相交于p点。
继续延长bc、ef,使它们相交于q点。
延长cd、af使它们相交于r点。
沈奇连接p、q、r三点,他喃喃自语:“p、q、r三点在同一直线上,这……这是帕斯卡定理?”
(注1帕斯卡定理:若一六边形内接于一圆,则每两条对应边相交而得的3点在同一直线上。)
“所以这是射影几何?”
沈奇得到了线索,却再次陷入沉思。
射影几何与欧氏几何并不矛盾,它算是欧氏几何的重要补充。
“左图看上去就是帕斯卡定理的经典图形表达,那么右图……”沈奇望向黑板,右图是三条直线相交于l点。
它们,这三条直线为何要交于l点?
这到底是圆锥曲线截面的彻底沦丧,还是射影和截景的变态扭曲?
欧几里得痴心苦守千年平行线永不相交,德扎格背后插刀该交点位于无穷远处究竟为哪般?
奈何罗巴切夫斯基抛出双曲几何,黎曼大师淡淡一笑说这他妈都是狗屁,真是情何以堪。
一块小小黑板的背后,隐藏了多少恩怨情仇?
红尘中谁来接手新旧几何的激烈碰撞?
被几何支配的恐惧,你能感受到吗?
咔嚓咔擦!
沈奇撕碎手中的白纸,假的,都是假的!
这题没有解,谬论!
沈奇抓耳挠腮,坐立不安,他走到窗户前,拉开窗帘。
明明一大早出宿舍的时候还是阳光普照,此刻天空中却是阴云密布。
射影几何射你大爷,太阳都被你射熄火了,所以今天是周一?
“管他周日还是周一,反正我们没得休息。饿,好饿,我一做题就会饿,做不出题更饿。”沈奇饿的咕咕叫,一小时前他刚吃过早餐,现在又饿了。
“莫非我激活了什么了不得的吃货属性?”
沈奇在小屋子里翻箱倒柜找吃的,然而结果令他失望,这里唯一能吃的东西除了白纸就是书籍,全是精神粮食。
“算了不吃了,忍一忍。”
短暂的暴躁之后,沈奇强行使自己冷静下来,他再次盯着黑板,如果是在射影几何的标准下,右图有很多种解补全方法,正确答案不止一个。
“但胖老孙单独把我喊来小黑屋,不可能出这么显而易见的题目给我做吧?这特么周雨安都会做啊,他应该会吧?”
不知为什么,沈奇的注意力无法集中,他东想西想胡思乱想,好想吃块小熊饼干啊。
就这么胡思乱想,一上午过去了。
中午十二点多的时候,嘎吱一声,小屋子的门开了,孙二雄左手拎着保温瓶、右手一壶醋,他哼着东北二人转小曲儿,悠悠然进屋。
将保温瓶和醋往桌子上一搁,孙二雄拿腔拿调的吆喝:“这位小客官,您点的韭菜虾仁馅水饺来嘞。”