学分支。
两三百年过去了,沈奇面临一个新问题,八桥问题。
最初版的欧拉七桥是无法得到答案的,至于八桥是否存在这么一条路径,得算算才知道。
沈奇上算下算,左算右算,半个小时过去,算不出来啊!
八桥是否和七桥一样,根本就不存在那条所谓的路径,能不遗漏、不重复的通过每一座桥梁,最终回到起点。
“全国赛毕竟是全国赛,拓扑这玩意非常难搞,我没有办法求出这条路径,也无法证明它不存在。”
沈奇放下笔尺,大力按压太阳穴,出师不利,出师不利啊。
时间一分一秒的过去,沈奇无法下笔,他有点强迫症,非得把第一题做出来,再去破解后面两题。
“欧拉,七桥,八桥……对了,我为什么一定要用欧拉的理论去破解基于欧拉七桥的变种题,这是个陷阱,死循环!”
沈奇恍然大悟,我想到了,我想到了,庞加莱的网络理论!
如果两个断端连接同先前一模一样,那么这是一种可允许的拓扑操作。
反之则不被允许!
没错啊,这八桥图的奇点在两端,所以根本不存在这种连接,能不遗漏、不重复的通过每一座桥梁。
这题的答案就是:不!存!在!
沈奇奋笔疾书写下证明过程,他只用3分钟就完成证明,而思考过程长达1个小时。
“呼……7分到手,下一题。”沈奇长吁一口气,烧死了好多脑细胞,好累。但战斗才刚刚开始,他不能松懈,他必须在规定时间内完成全部答题,并保证绝对正确。
即便如此,沈奇也不知道自己的目标能否最终达成。希望那五个猪队友,能给我争口气啊!